Optimal Sovereign Defaults in the Presence of Financial Frictions

Yun Pei University at Buffalo, SUNY

Tsinghua Workshop in International Finance and Monetary Policy May 25, 2017

Introduction

• Sovereign defaults are often accompanied by large declines in output.

- Questions:
 - Why are there declines in real economic activity?
 - What determines the government's default decision?
- In this paper:
 - Following default, financial disruptions lead to fall in output.
 - Obefault is: beneficial due to reduced tax distortions; costly due to output declines.

Motivating Evidence on Default and Economic Activity

- Event study analysis of 23 default episodes.
- Real economic activity is typically above trend before default.
- On average,
 - output falls about 5%;
 - investment falls about 17%;
 - G consumption falls about 3%;
 - employment falls about 2%.

Macroeconomic Dynamics around Default Episodes

Yun Pei (SUNY-Buffalo)

Key Mechanism for Output Decline

- Add financial frictions to a standard business cycle model.
 - Working capital must be borrowed and collateralized.
 - Physical capital and government bonds can be used as collateral.
- Default reduces collateral, and therefore working capital.
- Declines in working capital lead to fall in output.

Key Mechanism for Default Decisions

• Default gains are large when TFP is low.

- ► Has to levy higher tax rate to repay debt than in normal times.
- Reduces distortions by larger amount.
- Default losses are small when capital stock is high.
 - Higher capital stock implies higher collateral level.
 - Higher collateral implies lower financial frictions.
- Defaults typically occur after
 - a sequence of positive shocks and then,
 - a large negative shock.

Quantitative Findings

- In the data:
 - Argentina: more volatile TFP, more defaults.
 - Italy: less volatile TFP, no defaults.
- In the model: more volatile TFP leads to more frequent default.
 - Argentina: lower debt with relatively high default rate.
 - Italy: higher debt with negligible default rate.

Related Literature

- Default with Endowment Economy
 - Aguiar and Gopinath (2006), Arellano (2007), Chatterjee and Eyigungor (2012)
- Default with Production Economy
 - Mendoza and Yue (2012), Sosa-Padilla (2014), Bocola (2015), Perez (2015)
- Financial Frictions
 - Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Gertler and Kiyotaki (2010), Jermann and Quadrini (2012)

Roadmap

- Model
- Equilibrium
- Quantitative analysis
- Conclusion

Environment

- Time: infinite horizon, discrete
- Agents:
 - measure 1 of identical households
 - measure 1 of identical firms
 - measure 1 of identical banks
 - government

Preferences and Technology

• Households' preferences:

$$U(c,n) = \log(c) - \chi \frac{n^{1+\nu}}{1+\nu}$$

• Firms' production technology:

$$F(z,k,n)=zk^{\alpha}n^{1-\alpha}$$

- Aggregate states: S = (z, K, B)
 - z exogenous
 - K and B endogenous
 - States evolve according to $S' = \Gamma(S)$

Households' Problem

• Taking policy, price and dividend functions as given,

$$W^{h}(e; S) = \max_{c,n,e'} U(c,n) + \beta E \left[W^{h}(e'; S') \right]$$

s.t. $c + p(S)e' = [1 - \tau(S)]w(S)n + [p(S) + d(S)]e + \pi(S)$

where

- *e* : household's holding of equity in bank
- w(S): wage function
- p(S): equity price function
- d(S): bank's dividend function
- $\tau(S)$: tax function
- $\pi(S)$: firm's profit function

Firms' Problem

- Firms rent capital k from banks and hire labor n from households.
- Firms take intra-period working capital loans ℓ^f from banks.
- Working capital loan is to guarantee payments for capital and labor.
- Taking price functions as given, a firm's problem is

$$\pi(S) = \max_{k,n,\ell^f} F(z,k,n) - r(S)k - w(S)n + \ell^f - \ell^f$$

s.t. $\ell^f \ge r(S)k + w(S)n$

Banks: Budget Constraint

- Banks start of period with capital k and bonds b.
- Banks take intra-period deposits ℓ^h from households.
- Banks make working capital loan ℓ^f to firms.
- A bank's budget constraint is

$$d + k' + q(S)b' = (1 - \delta)k + r(S)k + b + (\ell^h - \ell^h) + (\ell^f - \ell^f)$$

where

Banks: Collateral Constraint

- Banks can choose not to repay households.
- Households can only recover fraction ξ of net worth k' + qb'.
- The collateral constraint is

$$\xi(k'+qb') \geq \ell^h$$

Banks' Problem

• Taking policy and price functions as given,

$$W^{b}(k, b; S) = \max_{d, k', b', \ell^{h}, \ell^{f}} d + \beta E \left[\frac{U_{c}(c', n')}{U_{c}(c, n)} W^{b}(k', b'; S') \right]$$

s.t.

$$d + k' + q(S)b' = (1 - \delta)k + r(S)k + [1 - D(S)\lambda]b$$

$$+ (\ell^{h} - \ell^{h}) + (\ell^{f} - \ell^{f})$$

$$\ell^{h} = \ell^{f}$$

$$\xi[k' + q(S)b'] \ge \ell^{h}$$

where

D(S): government default policy λ : haircut on debt

Government

- Policy instruments:
 - levy proportional taxes on labor;
 - issue new debt;
 - opossibly default on outstanding debt.
- Finances exogenous public spending.
- Maximizes households' welfare.
- Has no commitment to its policies.

Government Budget Constraint

• If repays,

$$gY(S) + B = q(S)B'(S) + \tau(S)w(S)n(S)$$

- If defaults,
 - writes off fraction λ of the debt, and cannot issue new debt.
 - gets back to the credit market next period.

$$gY(S) + (1 - \lambda)B = q(S)(1 - \lambda)B + \tau(S)w(S)n(S)$$

Timing of Events

Yun Pei (SUNY-Buffalo)

Sovereign Defaults and Financial Frictions

Government's Decisions to Default

• At the beginning of the period, government decides if it will default.

$$egin{aligned} V(z,k,b) &= \max\left\{V^r(z,k,b),V^d(z,k,b)
ight\}\ D&=0 \quad ext{if} \quad V^r(z,k,b) \geq V^d(z,k,b)\ D&=1 \quad ext{if} \quad V^r(z,k,b) < V^d(z,k,b) \end{aligned}$$

where

 V^r : value of repaying V^d : value of defaulting

Government's Problem - Repay

$$V'(z,k,b) = \max_{c,n,d,k',b',\tau,w,q,\mu} U(c,n) + \beta E [V(z',k',b')]$$
subject to
$$gzk^{\alpha}n^{1-\alpha} + b = qb' + \tau wn$$

$$c = (1-\tau)wn + d$$

$$d + k' + qb' = (1-\delta)k + zk^{\alpha}n^{1-\alpha} - wn + b$$

$$\frac{U_n}{U_c} = -(1-\tau)w$$

$$(1-\alpha)zk^{\alpha}n^{-\alpha} = \frac{w}{1-\mu}$$

$$(1-\xi\mu)q = \beta E \left(\frac{U_c(S')}{U_c} [1-D(S')\lambda]\right)$$

$$1 - \xi\mu = \beta E \left(\frac{U_c(S')}{U_c} [1-\delta + (1-\mu(S'))\alpha z'k'^{\alpha-1}n(S')^{1-\alpha}]\right)$$

$$\xi(k' + qb') \geq zk^{\alpha}n^{1-\alpha}, \mu \geq 0, \text{ and } \mu[\xi(k' + qb') - zk^{\alpha}n^{1-\alpha}] = 0$$

Government's Problem - Default

$$V^{d}(z, k, b) = \max_{c,n,d,k',\tau,w,q,\mu} U(c, n) + \beta E \left[V(z', k', (1-\lambda)b) \right]$$

subject to

$$gzk^{\alpha}n^{1-\alpha} + (1-\lambda)b = q(1-\lambda)b + \tau wn$$

$$c = (1-\tau)wn + d$$

$$d + k' + q(1-\lambda)b = (1-\delta)k + zk^{\alpha}n^{1-\alpha} - wn + (1-\lambda)b$$

$$\frac{U_{n}}{U_{c}} = -(1-\tau)w$$

$$(1-\alpha)zk^{\alpha}n^{-\alpha} = \frac{w}{1-\mu}$$

$$(1-\xi\mu)q = \beta E \left(\frac{U_{c}(S')}{U_{c}} \left[1 - D(S')\lambda \right] \right)$$

$$1 - \xi\mu = \beta E \left(\frac{U_{c}(S')}{U_{c}} \left[1 - \delta + (1-\mu(S'))\alpha z'k'^{\alpha-1}n(S')^{1-\alpha} \right] \right)$$

$$\xi(k' + q(1-\lambda)b) \geq zk^{\alpha}n^{1-\alpha}, \mu \geq 0, \text{ and } \mu[\xi(k' + q(1-\lambda)b) - zk^{\alpha}n^{1-\alpha}] = 0$$

Markov-Perfect Equilibrium

A Markov-Perfect Equilibrium is a set of value functions and policy functions for government, price functions, and allocation functions such that:

- given price functions, allocation functions and future government policy functions, current government policy functions solve the government's problem;
- given price functions and government policy functions, allocation functions are consistent with competitive equilibrium;
- policy functions obtained by solving government problem coincide with future government policy functions that government problem takes as given;

Tradeoffs in Government Policies

- Optimal for government to make labor wedge as small as possible.
- Labor wedge obtained from labor supply and demand equations

$$-\frac{U_n(c,n)}{U_c(c,n)} = (1-\tau)w$$
$$F_n(z,k,n) = \frac{w}{1-\mu}$$

where μ is Lagrange multiplier on the collateral constraint.

Combine to get

$$-\frac{U_n(c,n)}{U_c(c,n)} = \underbrace{(1-\tau)(1-\mu)}_{\text{Labor Wedge}} F_n(z,k,n)$$

• Default decreases taxes (τ) but increases financial frictions (μ) .

Quantitative Analysis

Quantitative Exercise

- Study Argentina and Italy.
- Use standard parameters and national accounts data.
- Estimate an AR(1) TFP process from data.
- Test if model can generate:
 - default frequencies
 - default patterns
 - output and investment declines

Parameters: Argentine data, annual frequency

Calibrated Parameters		Value	Target Statistics
Discount factor	β	0.95	Standard value
Disutility of labor	χ	4.18	Steady state hours $= 0.33$
Curvature of labor supply	ν	0.5	Frisch elasticity $= 2$
Capital share in output	α	0.3	Standard value
Capital depreciation rate	δ	0.1	Investment/GDP=20%
Govt spending/GDP	g	0.23	Govt spending/GDP = 23%
Partial default	λ	0.55	Haircut=55%
Collateral parameter	ξ	0.440	Mean debt/GDP = 27%
Autocorr. of prod shock	ρ_z	0.813	Autocorr. of TFP $= 0.813$
Std. dev. of prod shock	σ_z	0.046	Std. dev. of TFP = 0.046

Default and Repayment Set for Low Productivity Shock

Default and Repayment Set for Mean Productivity Shock

Yun Pei (SUNY-Buffalo)

Default and Repayment Set for High Productivity Shock

Argentina: Simulations

	Data	Model
Default probability	0.75%	0.78%
Mean output drop	11%	11.6%
Mean investment drop	36%	33.0%
Correlation btw default and GDP	-0.11	-0.127
Fraction of defaults with large recessions	32%	32.1%
Fraction of defaults with GDP below trend	62%	91.4%

Business Cycle Statistics

Argentina: Macro Dynamics around Default

Yun Pei (SUNY-Buffalo)

Argentina: Sensitivity Analysis

	Default	Output	Investment	$\sigma(r^s)$	$corr(y, r^s)$
	probability	urop	urop		
Data	0.75%	11%	36%	2.51	-0.62
Baseline	0.78%	11.6%	33.0%	1.21	-0.64
Partial def	fault rate (bas	seline: $\lambda =$	0.55)		
$\lambda = 0.5$	1.15%	10.7%	33.1%	1.54	-0.56
$\lambda = 0.6$	0.57%	12.1%	33.6%	1.22	-0.68
$\lambda = 0.7$	0.28%	12.9%	34.3%	1.17	-0.74
Frisch elasticity (baseline: $\frac{1}{\nu} = 2$)					
$\frac{1}{\nu} = 3$	0.45%	12.6%	35.8%	0.87	-0.66
$rac{1}{ u}=1.5$	0.95%	11.1%	31.8%	1.30	-0.68
Enforcement constraint (baseline: $\xi = 0.44$)					
$\xi = 0.43$	0.63%	11.6%	31.6%	1.34	-0.75
$\xi = 0.45$	0.94%	10.8%	32.1%	1.01	-0.52

Parameters: Italian data, annual frequency

Calibrated Parameters		Value	Target Statistics
Discount factor	β	0.95	Standard value
Disutility of labor	χ	4.27	Steady state hours $= 0.32$
Curvature of labor supply	ν	0.5	Frisch elasticity $= 2$
Capital share in output	α	0.3	Labor income share $= 0.7$
Capital depreciation rate	δ	0.1	Investment/GDP=20%
Govt spending/GDP	g	0.21	Govt spending/GDP = 21%
Partial default	λ	0.55	Haircut=55%
Collateral parameter	ξ	0.390	Mean debt/GDP = 59%
Autocorr. of prod shock	ρ_z	0.925	Autocorr. of TFP = 0.925
Std. dev. of prod shock	σ_z	0.020	Std. dev. of TFP = 0.020

- Use same preferences as for Argentina.
- Change TFP process and collateral constraint parameter.
- Get default rate: 0.028% in the model (0% in the data).
- If defaults, output decreases around 6.0%.

Counterfactual Analysis on Argentina

	Default probability	Output drop	Investment drop	$\sigma(r^s)$	$corr(y, r^s)$
Data	0.75%	11%	36%	2.51	-0.62
Baseline	0.78%	11.6%	33.0%	1.21	-0.64
Argentina has Italy's financial friction: $\xi = 0.39$					
	0.27%	11.8%	26.2%	2.05	-0.79
Argentina	has Italy's p	roductivit	y process: ρ_z	= 0.925	$\sigma_{z} = 0.020$
	0.24%	4.6%	5.8%	0.57	-0.50

Testable Implication

• Testable implication:

default risk is higher when capital stock is higher.

• Panel regression:

$$S_{it} = \alpha_i + \delta_t + \beta K_{it} + \gamma X_{it} + \epsilon_{it}$$

where

- *S* : sovereign spread from EMBI;
- K: capital to GDP ratio;
- X : debt to GDP ratio; real GDP growth rate; current account to GDP ratio; inflation.

Capital Stock and Sovereign Spread

	Panel FE (1)	Panel FE (2)	Panel FE (3)	Panel RE (4)
Capital/GDP	2.10***	0.76*	0.74*	0.95***
	(0.33)	(0.42)	(0.37)	(0.28)
Debt/GDP		0.31***	0.31***	0.31***
		(0.09)	(0.09)	(0.09)
GDP growth rate			0.05	0.01
			(0.13)	(0.12)
Current account/GDP			0.08	0.20
			(0.12)	(0.13)
Inflation			0.0056***	0.0048***
			(0.0009)	(0.0010)

Conclusions

- Government bonds as collateral to finance working capital.
- Tradeoff between tax distortion and output loss.
- Key aggregates are above trend until default.
- Declines in output and investment are in line with data.
- Consistent with both Argentina and Italy.

Appendix

Derivation of Collateral Constraint

m': stochastic discount factor

W': next-period value of bank

Yun Pei (SUNY-Buffalo)

Sovereign Defaults and Financial Frictions

Derivation of Collateral Constraint

- If bank offers $x \ge \xi(k' + qb')$, lender will accept.
- So if $\ell > \xi(k' + qb')$, bank will choose not to repay and instead offer $\xi(k' + qb')$ to lender.
- Anticipating this behavior, lender will only lend

$$\ell \leq \xi(k'+qb')$$

Market Clearing

• Market clearing conditions are

$$\begin{array}{rcl} e(S) &=& 1 \\ n^{h}(S) &=& n^{f}(S) \\ \ell^{h}(S) &=& \ell^{f}(S) \\ b'(S) &=& B'(S) \\ c(S) + k'(S) &=& (1-\delta)k + (1-g)zk^{\alpha}n(S)^{1-\alpha} \end{array}$$

Algorithm

The algorithm consists of value function iteration and policy function iteration.

- Create grids for productivity shocks, capital stock and bond holdings.
- Make initial guesses for V^0 , $E^{k,0}$, and $E^{b,0}$.
- At each grid point (z, k, b) and for each choice of b', first assume the collateral constraint is binding and solve a system of eight equations (the eight constraints in the value function) with eight unknowns {c, n, d, k', τ, w, q, μ} using a nonlinear equation solver.
- If the multiplier μ is negative, set it to zero, drop the collateral constraint and solve the system of seven equations with seven unknowns.

Algorithm

- The solutions are the economy's competitive equilibrium conditions if the government does not default and chooses b'.
- In a similar fashion, solve for the economy's competitive equilibrium conditions if the government defaults.
- Given these solutions, calculate the welfare $V^d(z, k, b)$ and $V^r(z, k, b) = \max \widehat{V}^r(z, k, b; b')$, and choose the optimal $b'^* \in \operatorname{argmax} \widehat{V}^r(z, k, b; b')$.
- Use the results to choose optimal default decision: $D^* = 1$ if $V^d > V^r$ and $D^* = 0$ otherwise.

Algorithm

- Iterate until the value function V converges.
- Update competitive equilibrium conditions and agents' conditional expectations.
- Iterate until the expectations E^k and E^b converge.
 Go back

Argentina: Business Cycle Statistics

	Data	Model
σ_y	5.66%	5.40%
σ_c/σ_y	1.14	0.41
σ_i/σ_y	2.95	3.59
σ_{n}/σ_{y}	0.31	0.53
σ_{r^s}	2.51%	1.21%
corr(y, c)	0.89	0.51
corr(y,i)	0.87	0.96
corr(y, n)	0.36	0.60
corr(y, r ^s)	-0.62	-0.64

Bond Price Functions

Policy Functions for Debt b'

Evolution of Capital k'

Argentina: Debt and Tax Dynamics around Default

